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Abstract— We apply stochastic Lyapunov theory to perform
stability analysis of MPC controllers for nonlinear deterministic
systems where the underlying optimisation algorithm is based
on Markov Chain Monte Carlo (MCMC) or other stochastic
methods. We provide a set of assumptions and conditions
required for employing the approximate value function obtained
as a stochastic Lyapunov function, thereby providing almost
sure closed loop stability. We demonstrate convergence of the
system state to a target set on an example, in which simulated
annealing with finite time stopping is used to control a nonlinear
system with non-convex constraints.

I. INTRODUCTION

Model predictive control (MPC) solves an open loop opti-
mal control problem at each time step [7]. The underlying
optimisation problems that must be solved in MPC schemes
for nonlinear systems with arbitrary constraints and objective
functions defined on continuous spaces are in general non-
convex. The existence of multimodalities in the objective
presents further challenges in solving for global optima.
In such instances, options for the optimisation method are
restricted to stochastic optimisation techniques. This paper
is concerned with the application of Markov Chain Monte
Carlo (MCMC) methods to solving for MPC control laws
for deterministic nonlinear systems.

Simulated annealing can admit an MCMC formulation for
expected utility optimisation [9], [1]. This has previously
been employed by [6] for nonlinear MPC with arbitrary dis-
turbances, with the incorporation of probabilistic constraint
satisfaction. Problems of feasibility and stability were not
addressed there.

This paper addresses the closed-loop stability of an MPC
control law implemented via the repeated application of
an MCMC optimiser, specifically simulated annealing, in a
receding horizon fashion. Probabilistic finite time guarantees
for general simulated annealing methods have been obtained
for instance by [5], in which the desired precision of the
‘approximate optimum’ [14] obtained is controlled by the
choice of stopping temperature. The MPC control laws
obtained with finite time stopping simulated annealing are
suboptimal.

Conditions under which suboptimal control of deterministic
systems is stabilising are examined by [8] and [12]. A
modified version of the standard Lyapunov stability theorem
allowing for nonuniqueness and discontinuity in the control
law is presented in [12]. One condition for convergence is
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that the cost function reduces at each time step. This is
achieved by enforcing a terminal set constraint, in which
a locally asymptotically stabilizing control law exists. Key
conditions on the terminal set and controller are presented
in [8] to ensure that the value function is Lyapunov. The
conditions ensure that it is sufficient to find a feasible
solution at each timestep to guarantee stability.

The use of stochastic optimisation for obtaining MPC control
laws introduces probabilistic uncertainty into the system,
even when the system dynamics are deterministic. A need
for establishing stability in this context therefore exists.
It is not possible to meet the stability requirement in [8]
and ensure reduction of the approximate value function at
each time step. The standard notion of Lyapunov stability is
inapplicable, so we consider stochastic Lyapunov functions,
which are processes having supermartingale properties [3] in
the neighbourhood of the stable point. Our contribution is the
application of stochastic stability theory [13], [3] to obtain an
extension of the existing stability result obtained by [8] when
approximate optima are obtained with MCMC optimisation.
We obtain conditions on the approximate value function to be
a stochastic Lyapunov function. Specifically, we show that
this is achieved by making the correct choice of stopping
temperature for the simulated annealing optimisation at each
time step. An MPC strategy with MCMC optimisation is
outlined and its stabilising properties discussed.

Some of the notation used in this paper is outlined here. The
state and control inputs are denoted x and v respectively. We
use xk to depict the actual measured state at time k. At the
time instant k, the prediction of the state i steps in the future
is denoted xk+i|k. The joint process (xk, vk) is represented
as φk. We denote the expectation of a real valued function of
a random variable Z ∼ π as Eπ[h(Z)] =

∫
h(z)π(z)dz. A

function α(·), defined on nonnegative reals, is a K-function
if it is continuous and strictly increasing with α(0) = 0.

The paper is organised as follows. In Section II, the prob-
lem formulation and background stochastic stability theory
is presented. The MPC formulation and proposed MCMC
optimisation procedure are outlined in section III. In section
IV, the stabilising properties of the proposed MPC strategy
are proved. An illustrative example is presented in Section
V and concluding remarks are made in Section VI.

II. PROBLEM FORMULATION AND BACKGROUND

We consider controlling a discrete time deterministic system
whose dynamics can be described as

xk+1 = f(xk, vk), (1)

where x ∈ Rn and v ∈ Rm and f : Rn×Rm → Rn is a non-
linear mapping of the states and inputs to the successor state.
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The inputs and state must satisfy the following constraints:

vk ∈ U ⊂ Rm (2)
xk ∈ X ⊂ Rn. (3)

where U is compact and X is closed. The control objective
is to steer the state to the origin. Given the difficulty in
obtaining a closed form solution for stabilising controllers
for nonlinear systems with nonconvex constraint sets, we
consider randomised sampling of control inputs. We seek to
obtain control laws which give rise to almost sure asymptotic
stability [3] of the system in (1) as defined below:

Definition 2.1: Asymptotic Stability

1) The origin is stable with probability one if and only if,
for any ρ > 0, ε > 0, there is a δ > 0 such that,

Pr(sup
k
‖xk‖ ≥ ε) ≤ ρ

for all ‖x0‖ ≤ δ.

2) The origin is asymptotically stable with probability 1 if
and only if it is stable w.p.1., and xn → 0 w.p.1 for all
x0 in some neighbourhood of the origin.

At time k, a measurement of the current state xk is made, and
control inputs vk are sampled according to some distribution
πk(vk|xk) dependent on xk. The control law vk is applied,
giving rise to a successor state generated by (1). The joint
process φk evolves according to

Φk+1 ∼ pk+1(·|Φk),

with the conditional distribution pk+1 given by 1

pk+1(φk+1|φk) = δ(xk+1 − f(xk, vk))πk+1(vk+1|xk+1).
(4)

The origin is asymptotically stable according to Definition
2.1 if the conditions of the following theorem are satisfied:

Theorem 2.1: Assume the following conditions hold:

(i.) There is a function V : Rn × Rm → R continuous at
the origin with V (0, 0) = 0, and a K-function α, such
that for all x ∈ Rn, v ∈ Rm,

V (x, v) ≥ α(||x||) (5)

(ii.) There is a compact set Q ⊆ Rn that contains the origin,
and given the initial condition x0 ∈ Q, realisations of
the controlled system trajectory (xk, vk) satisfy xk ∈
Q with probability 1.

(iii.) There exists a K-function η(·) such that in Q, along
the controlled system trajectory

Epk+1 [V (Φk+1)|Φk = (x, v)]−V (x, v) ≤ −η(‖x, v‖)
(6)

(iv.) For any λ > 0, there exists a δ > 0 such that
Eπ0 [V (x0, v0)] < λ for all ||x0||≤ δ .

1Although the state transition from xk to xk+1 is deterministic, we shall
treat xk+1 as an extreme case of a random variable drawn from a delta
function distribution as this is more convenient for our analysis.

Then, the origin is asymptotically stabilising for all x0 ∈ Q
with probability 1.

Proof:

• Stability of the origin follows from Theorem 1, [3].
• Convergence: In view of Theorem 1, [4, Ch.6, p.71], we

have η(‖xk, vk‖) → 0 with probability 1. Since η(·) is a
class K-function, this implies x, v → 0 with probability
1.

In the next sections we define a cost function V and input
sampling distributions πk, using a combination of MPC and
MCMC to ensure V is a stochastic Lyapunov function, and
the conditions of Theorem 2.1 are satisfied.

III. MPC AND MCMC OPTIMISATION

A. MPC

We consider controlling the system in (1) via the Model
Predictive Control (MPC) approach. The MPC formalism
requires an explicit model of the process. The current control
action is obtained via optimisation of an open-loop objective
over a finite prediction horizon, which is solved in a receding
horizon manner. The solution is performed online, unlike
other control techniques where precomputed control laws are
applied.
The prediction horizon is of length N . The state prediction
xk+i|k is generated by the model in (7), where vk+i|k is the
predicted open loop input:

xk+i+1|k := f(xk+i|k, vk+i|k), (7)
for i = 0, . . . , N − 1

xk|k := xk.

For the state xk at time k, the cost is defined as:

V (xk, uk) :=
k+N−1∑

j=k

L(xj|k, vj|k) + F (xk+N |k) (8)

with stage cost L : Rn × Rm → R, L(x, u) >
l(‖x, u‖), (x, u) += (0, 0), where l(·) is a K-function and
L(0, 0) = l(‖0, 0‖) = 0. The terminal cost is F : Rn → R+.
.A terminal constraint is enforced:

xk+N |k ∈ Xf ⊂ X (9)

We require f(·), L(·, ·) and F (·) to be continuous, U compact
and X and Xf to be closed to ensure that a minimum for
V (xk, ·) exists [8]. The finite input sequence of predicted
future controls is denoted:

uk := {vk|k, vk+1|k, . . . , vk+N−1|k}.

The feasible set of input sequences satisfying the control,
state and terminal constraints is defined as U(xk), and in
general depends on the initial state xk. The optimisation
problem at each time instant k is to minimise V (xk, ·),
yielding the value function

V ∗(xk) := min
uk∈U(xk)

V (xk, uk) (10)
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by obtaining the optimal sequence of inputs u∗k from the
feasible set U(xk).

u∗k = argmin
u

V (xk, uk)

=: {v∗k|k, . . . , v∗k+N−1|k}.

The MPC control law applied to the state xk at time k is
the first input vk|k of the actual sequence uk obtained by the
optimisation, vk = vk|k, giving the closed loop system

xk+1 = f(xk, vk). (11)

B. MCMC Optimisation

Here we describe the randomised sampling technique for
minimising the objective function V (xk, ·) at each time k.
A key property of the approximate optimum obtained this
way is then derived which ensures the cost is a stochastic
Lyapunov function. The subscript k denoting system time
is dropped from the notation in this section for clarity. A
suitable transformation of variables is applied to convert the
original minimisation problem to that of maximisation. An
example would be g := −V +supu,x V (x, u). Note that g is
a function of both the state and input sequence x and u, but
the optimisation variable of interest is u. At each time, we
would like to sample control input sequences according to a
distribution whose modes coincide with the maximisers of g,
and which enables satisfaction of the latter two requirements
of Theorem 2.1. We propose sampling inputs according to
a distribution π proportional to the objective function raised
to a positive exponent J̄ :

π(u|x) ∝ gJ̄(x, u).

The higher the value of J̄ , the more concentrated about
the optimum values of g(x, ·) the distribution π becomes.
Sampling from this distribution is enabled by constructing
a suitable Markov chain in u, with stationary distribution
π. This is achieved by the following simulated annealing
algorithm. We begin with a proposal distribution q, which
can be chosen freely by the user but is required to be sup-
ported on the whole space. We also require a nondecreasing
sequence of inverse temperatures {Jn} with Jn ≤ J̄ , known
as a cooling schedule, with n denoting the chain iteration
index.

Algorithm 3.1: Simulated annealing with finite time stop-
ping
Initialise: At n = 0

1) Select q0(·). Initialise J = J0.

2) Extract a sample U0 ∼ q0. Set U = U0.

Repeat:

1) Draw a new input sample sequence Ũ ∼ q(·|U);

2) Record Ũ as a proposed new state of the Markov chain;

3) Evaluate the acceptance probability

ρJ = min

[
1,

gJ(x, Ũ)q(U |Ũ)
gJ(x, U)q(Ũ |U)

]
.

Accept the proposal Ũ with probability ρJ and set
U = Ũ . Otherwise, with probability 1 − ρJ , leave U
unchanged;

4) If J < J̄ , set J to Jn+1. Else keep J fixed at J̄ ;

Repeat 1−4 until convergence of the chain to the stationary
distribution π is achieved. Discard the initial samples ob-
tained with J < J̄ and select the final sample û of those
samples remaining obtained with J = J̄ .

Constraints are handled by rejecting infeasible points. Other
options include appending the cost with a parameter repre-
senting a reward for constraint satisfaction. Inputs û chosen
according to Algorithm 3.1 are distributed approximately
according to the stationary distribution of the Markov chain
in u with the ‘inverse temperature’ [10] capped at J̄ , given
by:

û ∼ π =
gJ̄(x, u)∫
gJ̄(x, u)du

We consider now a feature of the approximate optimum
obtained by implementation of Algorithm 3.1 which is neces-
sary for implementing the MPC scheme presented later. The
closeness of the expected value of the approximate optimum
to the global optimum of the cost function is determined by
the choice of capping parameter J̄ . The expected value of
the approximate optimum is:

Eπ[g(x, U)] =
∫

g(x, u)π(u)du

=
∫

gJ̄+1(x, u)du∫
gJ̄(x, u)du

,

since

π(u|x) =
gJ̄(x, u)∫
gJ̄(x, u)du

.

Writing
∫

gJ̄(x, u)du as ‖gJ̄(x, ·)‖1, since g(x, u) ≥ 0,
the expected difference between the global and approximate
optimum is given by

Eπ[sup
u

g(x, u)− g(x, u)] =

sup
u

g(x, u)− ‖gJ̄+1(x, ·)‖1
‖gJ̄(x, ·)‖1

(12)

The following result shows that this expected difference can
be made arbitrarily small.

Lemma 3.1: For any π-measurable function g̃, assume that
g̃ : Rm → R is such that g̃(u) ≥ 0 for all u and
ess supu g̃(u) = supu g̃(u) =: g̃∗. For any ε > 0, there
exists a finite M such that for all n > M ,

g̃∗ − ‖g̃n+1‖1
‖g̃n‖1

≤ ε.

Proof:

‖g̃n‖1 = ‖g̃
n+1

2 g̃
n−1

2 ‖1
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From Holder’s inequality we have

‖g̃
n+1

2 g̃
n−1

2 ‖1 ≤ ‖g̃
n+1

2 ‖2‖g̃
n−1

2 ‖2
‖g̃

n+1
2 g̃

n−1
2 ‖21 ≤ ‖g̃

n+1
2 ‖22‖g̃

n−1
2 ‖22

= ‖g̃n+1‖1‖g̃n−1‖1
‖g̃n‖21 ≤ ‖g̃n+1‖1‖g̃n−1‖1

‖g̃n+1‖1
‖g̃n‖1

≥ ‖g̃n‖1
‖g̃n−1‖1

(13)

From [11], Chapter 6, p.71, we have

lim
n→∞

‖g̃n+1‖1
‖g̃n‖1

= sup g̃ = g̃∗

The sequence
{

sup
u

g̃(u)− ‖g̃n+1(u)‖1
‖g̃n(u)‖1

}

n≥0

is thus monotonically non-increasing for all positive n, and
converges to 0. It follows that for any ε > 0, there exists an
M such that for all n > M ,

g̃∗ − ‖g̃n+1‖1
‖g̃n‖1

≤ ε.

If we make the transformation g := Vsup−V , where Vsup :=
supx,u V , we have

g∗ := sup
u

g = Vsup − inf
u

V (14)

From Lemma 3.1, we have

Eπ[g∗ − g] ≤ ε

Combining with (14) gives

Eπ[Vsup − inf
u

V − (Vsup − V (x, U))] ≤ ε

Eπ[V (x, U)− V (x, u∗)] ≤ ε (15)

It follows that the expected difference between the global
optimum of V (xk, ·) and the expected cost can be made
arbitrarily small by suitable choice of stopping inverse
temperature at each time step. This feature is required for
implementation of the proposed MPC strategy detailed next,
and is also necessary for the stability analysis in Section IV.
As the stopping temperature need not be the same at each
time step k, we will denote it J̄(k) henceforth.

C. MCMC with MPC

We now detail the overall receding horizon MPC scheme
with the MCMC optimisation. The control input sequence
uk(xk) obtained by the simulated annealing optimisation
at each time step k with state xk must satisfy the state
and input constraints. Additionally, we place a requirement
on the solution quality at each time step in terms of the
expected difference between the global optimum and ap-
proximate solution. The requirement is that at each time
step, the expected difference between the global optimum
and approximate solution is no greater than some fraction
of the first stage cost at the previous timestep. This fraction

is determined by the K-function l(·) that bounds this stage
cost from below, as defined in Section III. We present now
the algorithm:

Algorithm 3.2: MPC with Simulated Annealing

1) At time k = 0, state x0, find a control sequence u0 =
{v0|0, v1|0, . . . , vN−1|0} which satisfies (2), (3), (7) and
(9). Set v0 = v0|0.

2) At system time k, measure state xk, choose an inverse
stopping temperature J̄(k) large enough which satisfies

Eπk [V (xk, Uk)− V (xk, u∗k)] ≤
L(xk−1, vk−1|k−1)− l(‖xk−1, vk−1|k−1‖) (16)

and implement Algorithm 3.1 to obtain a control se-
quence
uk = {vk|k, vk+1|k, . . . , vk+N−1|k} = û that satisfies
(2), (3), (7) and (9). Set vk = vk|k.

From Lemma 3.1, setting the right hand side of (16) to be the
ε term in (15), it follows that a value for J̄(k) exists at each
timestep which satisfies the stipulated requirement on the
solution quality. The bounds on solution quality obtained for
simulated annealing with finite-time stopping in [5] provide
a useful starting point in determining J̄(k). The stabilising
properties of the resulting suboptimal MPC law are explored
in Section IV.

Remark 3.1: Care must be taken to distinguish between the
state of Markov chain generated by Algorithm 3.1 and the
controlled system chain state, which evolves within a differ-
ent time frame; at every time instant k, with respect to the
system time reference, a Markov chain is constructed whose
state evolves with iteration n, (with the system time still
fixed at k) according to an inhomogeneous Markov Chain
transition kernel [10] generated by Algorithm 3.1. Note we
make the key assumption in the closed loop stability analysis
that the extractions from the chain are generated from the
stationary distribution. Criteria for diagnosing convergence
to stationarity of the chain are presented in [10]. In [2], [9] it
is shown that under certain conditions, including employing
a logarithmic cooling schedule for incrementing J̄ , in the
limit with infinite J̄ , the distribution of the Markov chain
converges to a uniform distribution over the set of minimisers
of V (x, ·). In practice only a finite value of J̄ is required,
and in the next section it is shown how closed loop stability
is achieved with J̄ chosen to meet the requirements of
Algorithm 3.2.

IV. STABILITY IN MPC WITH SIMULATED ANNEALING

We seek to establish almost sure stability [3] of the closed
loop system in (11). Before proceeding with establishing
the stabilising properties of the control law that arise by
implementation of Algorithm 3.2, we first require some
ancillary results and assumptions. Appropriate conditions
on the terminal set Xf and terminal cost F (·) need to be
determined. We detail them next:

Assumptions 4.1:

(i) The terminal set Xf ⊂ X, Xf is closed, 0 ∈ Xf .
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(ii) There exists a controller uf (x) ∈ U, ∀x ∈ Xf .

(iii) f(x, uf (x)) ∈ Xf , ∀x ∈ Xf (Xf is positively invariant
under uf (·)).

(iv) F (f(x, uf (x)))+L(x, uf (x))−F (x) ≤ 0,∀xk ∈ Xf .

(v) There exists a K-function σ(·), such that {x0, u∗0}
satisfies

||u∗0||≤ σ(||x0||) (17)

The first four conditions in Assumption 4.1 have been
identified by [8] as key ingredients for closed loop stability
when employing their strategy. As in [8], we require the
existence of a terminal controller uf in the terminal set Xf

satisfying the properties in Assumption 4.1. The control law
that is actually applied when the state is in the terminal set
is obtained from the optimisation.

The third condition in Theorem 2.1 for almost sure stability
concerns the initial expected approximate value function
and initial state. The proof of Theorem 4.1, showing that
this condition is satisfied on carrying out Algorithm 3.2,
requires the following result about the initial state and initial
expectation of the approximate solution:

Lemma 4.1: For any λ > 0, given that V is continuous at
the origin and V (0, 0) = 0, there exists a J and δ > 0 such
that

Eπ0 [V (x0, U0)] < λ− V (x0, u
∗
0) (18)

for all ||x0||≤ δ.
Proof: For all r ≥ 0, n ≥ 1, define Br := {x ∈ Rn : ||x||≤
r}. As V is continuous at the origin, with V (0, 0) = 0, there
exists a constant r1 > 0 and a K-function β(·) such that

V (x, u) ≤ β(||(x, u)||) ∀x ∈ Br1 .

For any λ > 0, there exists a δ > 0 such that δ < r1 and
σ(δ) ≤ r1.
Let ||x0|| < δ. Now ||u∗0|| < σ(δ) and

V (x0, u
∗
0) ≤ β(||x0, u

∗
0||) ≤ β(δ + σ(δ)).

As δ → 0, σ(δ) → 0, and therefore δ + σ(δ) → 0 and
β(δ + σ(δ)) → 0. Given λ > 0, a δ > 0 satisfying λ −
V (x0, u∗0) > 0 exists. From equation (12) and Lemma 3.1 it
follows that there exists a J such that (18) holds.

We are now ready to establish the convergence properties of
the control law that arise by implementation of Algorithm
3.2.

Theorem 4.1: Let Q represent the set of states for which
there exists a control sequence that satisfies (2), (3), (7)
and (9) and (16). Given satisfaction of Assumptions 4.1, the
MPC law arising from implementation of Algorithm 3.2 is
asymptotically stabilising with region of attraction Q.

Proof: The algorithm ensures that along trajectories of
the controlled system we have xk ∈ Q, satisfying condition
(ii) of Theorem 2.1 by assumption, and

Eπk+1 [V (xk+1, Uk+1)− V (xk+1, u
∗
k+1)] ≤

L(xk, vk|k)− l(‖xk, vk|k‖). (19)

The following analysis shows the equivalence of this relation
and the stochastic Lyapunov condition (iii) in Theorem 2.1 .
The model predictive controller vk = vk|k steers xk to xk+1.

V (xk+1, {vk+1|k, . . . , uf (xk+N |k)}) =
V (xk, {vk|k, vk+1|k, . . . vk+N−1|k})− L(xk, vk|k)

− F (xk+N |k) + L(xk+N |k, uf (xk+N |k))
+ F (f(xk+N |k, uf (xk+N |k))) (20)

The sum of the last three terms is less than or equal to zero,
from Assumption 4.1(iv), giving

L(xk, vk|k) ≤ V (xk, uk)
− V (xk+1, {vk+1|k, . . . , uf (xk+N |k)}) (21)

Substitution of (21) into (19) yields

Eπk+1 [V (xk+1, Uk+1)− V (xk+1, u
∗
k+1)]

≤ V (xk, {vk|k, vk+1|k, . . . vk+N−1|k})
− V (xk+1, {vk+1|k, . . . , uf (xk+N |k)})− l(‖xk, vk|k‖)

(22)

The cost associated with {vk+1|k, . . . , uf (xk+N |k)} and state
xk+1 is an upper bound for the cost yielded on application
of the optimal sequence of inputs u∗k+1.

V (xk+1, {vk+1|k, . . . , uf (xk+N |k)}) ≥ V (xk+1, u
∗
k+1)

It follows that

Eπk+1 [V (xk+1, Uk+1)− V (xk+1, u
∗
k+1)]

≤ V (xk, uk)− V (xk+1, u
∗
k+1)− l(‖xk, vk|k‖) (23)

Since V (xk+1, u∗k+1) is not a random variable,

Eπk+1 [V (xk+1, Uk+1)] ≤ V (xk, uk)− l(‖xk, vk|k‖).

Noting also that

Eπk+1 [V (xk+1, Uk+1)]
= Epk+1 [V (Xk+1, Uk+1)|Xk = xk, Uk = uk] (24)

with pk+1 defined in (4), we see that condition (iii) of
Theorem 2.1 is satisfied. Almost sure convergence of the
state to the origin follows. From Lemma 4.1 it follows that
for any λ > 0 there exists a J and δ > 0 such that

Eπ0 [V (x0, U0)] < λ− V (x0, u
∗
0)

for all ||x0||≤ δ. Condition (iv) of Theorem 2.1 is there-
fore satisfied. Almost sure asymptotic stability follows from
Theorem 2.1.

V. SIMULATION EXAMPLE

We now present an example to illustrate application of
simulated annealing to nonlinear MPC. It is shown that an
inverse stopping temperature can be determined empirically
by simulation. The objective is to drive a constant speed
particle in 2D to a target set centred at OT whilst avoiding an
obstacle of radius R centred at OX = [Ox Oy]. The control
input vk is the change in particle heading, θk − θk−1. The
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state at time k is xk = [xk yk θk]′. The system is nonlinear
in state and input and described by:

xk+1 = xk +




V cos(θk + uk)
V sin(θk + uk)

vk





where V = 5. The stage cost is given by:

L(x, u) =
∥∥[

x− [OT 0]′]
∥∥

2
(25)

The horizon length N = 5, and the constraint sets for the
controls and states are U = {u ∈ R : 0 ≤ u ≤ 2π} and
X = {x ∈ Rn : (x−Ox)2 + (y −Oy)2 > R2} .

The initial state x0 is [10 15]′ and the target set is centred
at OT = [50 50]′.

The problem is solved in a receding horizon manner. We
implement Algorithm 3.2 without identifying a distinct J̄(k)
at each time k, but instead keeping J̄ fixed for the entire
sequence of optimisations. Control inputs yielding infea-
sible solutions are rejected. For the cooling schedule, we
increment Jn by 1 every 25 iterations until J = J̄ . For
the proposal distribution, we use a Gaussian random walk
centred on the current value of the chain. Figure 1 depicts
sample trajectories obtained with variable obstacle widths
R = {5, 10, 15} and fixed horizon length N = 5. It can
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Fig. 1. Representative particle trajectories obtained with obstacles of radii
5, 10 and 15, and inverse stopping temperature J̄ = 40.

be seen that in each instance, the target set is reached.
The total number of iterations per stage required for the
simulations, n, were 2195, 3897 and 5755 respectively, and
took 3.3, 5.7 and 8.1 seconds on a networked 2.4 GHz Dual
Processor. A burn-in period of 500 iterations was used, and
convergence of the chain was judged to be achieved after
a certain number of states (1000) were accepted. As the
obstacle radius is increased, a greater extent of resampling
is required as the infeasible region increases, resulting in an
increased number of iterations required. As the value of J̄
was fixed for the entirety of each simulation, and not tuned
for each optimisation at k, there is scope for a reduction in
the number of iterations required.

VI. CONCLUDING REMARKS

In this paper we consider application of simulated annealing
to the MPC optimisation problems that arise for nonlinear,
deterministic discrete time systems. We present a suboptimal
MPC scheme with almost sure stabilising properties. This
is a useful extension to the deterministic stability result
in [8], [12], for cases where near optimality is a solution
requirement, and the optimisation method is stochastic. As in
[8], we are required to enforce a terminal set constraint with
similar conditions on the terminal set and terminal controller
which is assumed to exist. As a monotonic cost reduction
constraint cannot be imposed when a randomised optimiser
is used, a condition is placed on the solution quality in terms
of its expected value. Although we do not explictly state
how to determine a stopping temperature at each time step
to achieve this, we prove that such a value exists, and it is
shown by simulation that it can be empirically determined
for our example.

We are currently extending this work to establish almost sure
stability of MPC schemes for stochastic nonlinear systems
with an expected objective minimisation formulation.
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